Multi-tier gene expression analyses of environmental plasticity: From nucleosomes to ribosomes in rice and other species
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Abstract

From seed germination to ovule fertilization, plant development
is exquisitely orchestrated by genetic processes that are fine-
tuned by environmental cues. This plasticity entails the precise
regulation of networks of genes in individual cells. Of all the
stresses experienced by crops, extremes in water are particularly
damaging to vields. We are asking: How does gene activity in
stem cells (meristems) of roots and shoots differ across crop
species? How do flooding and drought stress influence the
development of specialized cell types in the root?

To address these questions we have refined the INTACT (Isolation
of nuclei tagged in specific cell types) and TRAP (Tagged
ribosome affinity purification) technologies developed in
Arabidopsis, which enable examination of the epigenome,
transcriptome, and translatome of specific cell types.

Our challenges and successes have been:

 To adapt INTACT and TRAP methods for crop species

 To establish Agrobacterium rhizhogenes-promoted hairy roots
in tomato and Medicago

* To identify meristem and root cell-specific promoters

* To optimize INTACT in a monocot

 Tointegrate INTACT with “tagmentation” (ATAC-seq)

* To advance nuclear RNA, mRNA and ribosome footprint library
construction with limited rRNA contamination

* To establish pipelines for data analysis
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2. Establishment of INTACT and TRAP lines in four species
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Identity by expression: Totipotent cells from the
meristem (M) express SHOOT-MERISTEMLESS
(LET6). Cells begin to differentiate into leaves (P,) by
expressing antagonistic LYRATE (I¥R) to form leaf
primordia. LYR expression also marks leaflets (*) in
older, compound leaf primordia (P,). Further leaf
tissue identity is defined at this stage by the
expression of BLADE-ON-PETIOLE (BOP) which
represses laminar tissue differentiation, creating
petioles and petiolules. Even at this stage, cells
remain plastic in their fate. Cellular identity
commitment finally occurs with the expression of
AthB8 which initiates vasculature development.

3. Purification of nuclei by INTACT and polysomes by TRAP
as illustrated in rice
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4. Validation of common submergence conditions in
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Alcohol dehydrogenase (ADH) mRNA levels, encoding an enzyme required for anaerobic metabolism, were quantified
by qRT-PCR. Values were normalized to ACT2 mRNA levels for S. lycopersicum and S. penelli, RPL2 for M. truncatula,
and UBCII for O. sativa. The 2 hour time point was selected for inter-species comparison of nuclear transcriptome,
translatome and chromatin regulation by the stress.

5. Chromatin, nuclear pre-mRNA and polysomal mRNA
analyses in root meristematic regions under submergence
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Transcripts are altered in abundance by submergence in nuclear, total and polysomal RNA populations
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6. Current work of the Plasticity Project group

(1) Cell-type specific atlas under water stress
conditions in the greenhouse (illustrated for rice)
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(2) Field validation of new technologies for rice,
tomato and medicago at UCR and UCD



